
A-14269 'rE GYM A MPIJ S
UNCLASSIFIED a .CV- F- / ML



t.01112L

HiII 1.8l lll

MICROCOPY RESOLUTION TEST CH'.RT

NATIONAL BUREAU OF STANDARDS -IP6-



Wide Band Gyrotron Traveling
Wave Amplifier Analysis

A. Rekiouak and B. R. Cheo

DTIC
9LECTE
APR 1 3 I= U

I..

App~odforpubic rom"



POLY-WRI-1531-88

Wide Band Gyrotron Traveling

Wave Amplifier Analysis

A. Rekiouak and B. Rt. Cheo

Weber Research Institute
Polytechnic University

Farmingdale,.New York 11735

DTIC
APR 1 3 1988

IDISTEUTION STATDMNT A
Approed fr public zulme

DPlenbuUon Unvrmited



UNCLASSIFIED MASTER LOPY -FOR REPRODUCTION PURPOSES
SECURITY CLASSIFICATION OF THIS PAG

REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CLASIFICATION lb. RESTRICTIVE MARI(INGS

Uni,1nmnai1Wad
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAJLIIIUTY OF REPORT

2b. DECLASSIFICATON/DOWNGRADINd SCEDL Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
ARO 23282.1-PH-A

6a. NAME OF PERFORMIN4G ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Polytechnic Inst of New York (if agptFkable) U. S. Army Research Office

Cc. ADDRESS (OW,~ State, and 2110 Cod*) 7b. ADDRESS (City, State, and ZIP Code)

Farmingdale, NY 11735 P. 0. Box 12211

Research Triangle Park, NC 27709-2211

Sas. NAME OF FUNDING /SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

U. S. Army Research Office IAG985K05
Sc ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM PROJECT TASK IWORK UNIT
Research Triangle Park, NC 27709-2211ELMNNO IN.N. CSINN.

11. TITLE (include Security Classificatlon)

Wide Band Gyrotron Graveling Wave Amplifier Analysis

12. PE%9Nk jft~dA 5hnd B. R. Cheo

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT
Final IFROM1/15/85To 2/29/881' 118

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those
of, he authgr( ) and sh uld not beconst ud as an ffiACial D artment of the Army position,

19. ABSTRACT (Contlnue on reverse Nf necessary and .dentffy by block number)

Linear arid non-linear analyses on a gyrotroi amplifier

with a periodically disc-loaded Cylindrical wavegilide- cir-

cuit are performed. The dispersion relation of the~ cirrcit

allows for wideband interaction with a rela-tivistic 1beam ()f

moderate power (V b = 60kV, I b = 5A). Linear analysis of the

DO FORM 1473, 84 MAR 63A"edio may be used until *xhausted. SECURITY CLASSIICATION OF THIS PAGE
All Other editions are obsolete. UNCLASS IFIED



UNCLASSIFIED
SECUUIY CLASFlCAoMM OF THIS PASS

order of 50-60dB/m over a bandwidth larger than 22% and a

linear phase versus frequency characteristic. Non linear

analysis predicts the following saturation characteri. ;tics:

a 48kW peak output power at 5.:3GIz with 16% efficienicy. The

saturation length of the tube is about 37cm.

These results show that this device is competitive with

conventional high power traveling wave devices in perfor-

mance, and, being simpler in structure, also in cost.

UNCLASSIFIED

SIECURITY CLASSIFICATION O THIS PAGE



ABSTRACT

WIDE BAND GYROTRON TRAVELING

WAVE AMPLIFIER ANALYSIS

A.Rekiouak and B.R.Cheo

December 1987

Linear arid non-linear analyses on a gyrotron amplifier

with a periodically disc-loaded cylindrical waveguide cir-

cuit are performed. The dispersion relation of the circuit

allows for wideband interaction with a relativistic beam of

moderate power (Vb = 60kV, lb = 5A). r.inieaa arialysi ; of the

interaction with the fu]ndamental mode shows a gain of the

order of 50-60dB/m over a bandwidth larger than 22% and a

linear phase versus frequency characteristic. Non linear

analysis predicts the following saturation characte.ifl tcE-c:

a 48kW peak output power at 5.:3(3Hz with 16% efficimcy. The

saturation length of the tube is about 37cm.

" These results show that this device is competitive with

conventional high power traveling wave devices in perfor-

mance, and, being simpler in structure, also in cost.
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CHAPTER 1

INTRODUCTION

Gyrotrons belong to a class of vacuum electron devices

whose operating principle is based on the relativistic

interactions between the transverse rf fields and the gyrat-

ing electron beams, [1]-[8]. The basic physical principle

underlying the operation of gyrotron devices is sometimes

referred to as cyclotron maser instability (CMI). It is

generally aknowledged that Twiss [9] in 1958 was the first

to recognize it as an amplifying mechanism for free electron

gyroradiation. Since then, research in the CMI/gyrotron

effect has been very active in understanding the phenomenon,

finding applications and tapping this new source of radia-

tion.

Most of the work on gyrotrons has concentrated in the

past in achieving high power, efficient MM wave oscillators

for plasma heating experiments. Considerable success has

been reported in this area. Andronov et al,[10], reported on

experiments with gyrotrons that operated at MM wavelength

with output power over 1MW within a pulse duration of about

10-4s. In one of the experimental gyrotrons operating at 3mm

wavelength, a pulsed ouput power of as much as 2.1MW was

reportedly attained, [11] cited in [15]. Other frequencies
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were investigated and, in an experiment with a gyromonotron

using a TEoI circular mode and operating at 35CHz, a peak

output power of about 150kW with a 31% efficiency at 100kW

was achieved, [12]; a gyrotron operating at the same 35GHz

frequency but using a TE 0 4 mode, (13], achieved output

powers of 320kW with an efficiency of 40%. Boucher et al.

[14], achieved 150kW output power at the same frequency

(35GHz) using a TE 0 2 circular mode. Fix, Flyagin et al.

reported in [15] results such as 100kW quasi-CW output power

of 3mm wavelength, 150kW with 10% efficiency at 5.6mm, 140kW

with 25% efficiency at 9mm. Jory, Friedlander et al., (16],

built a pulsed gyrotron which produced 248kW peak output

power at 28GHz and 34% efficiency. Symons and Jory, (17],

achieved 212kW CW output power at 28GHz.

Although gyrotrons oscillators have had some success as

rf sources for plasma heating in fusion devices, their lack

of signal coherence and the higher signal quality required

for applications in radar and communications has eliminated

them as potential sources in those applications. However,

another possible application of the CMI effect has been

identified: since as an oscillator it is not a scurce

suitable for radar/communication purposes, it is of interest

to look into the possibility of achieving high quality

amplifier application of the basic CMI effect.

AL



3

To be regarded as a high quality amplifier, it is well

accepced that the device should have large instantaneous

bandwidth, and also nearly linear phase versus frequency

characteristics. It is in these aspects that the gyrotron

amplifier effort has been less than successful. A C-band

gyro-TWT experiment at Varian was performed by Symons, Jory,

Ferguson and Valier, [18]-[19]. In this experiment, the

fundamental electron cyclotron frequency of the beam inter-

acts with the TE11 dominant waveguide mode: an output power

of 50kW with 16.6% efficiency and 6% bandwidth was achieved,

[15]. Higher power outputs or larger bandwidths were achie-

ved using various beam powers. The largest instantaneous

bandwidth was 9.3% for 18.8kW peak output power at a 9.8%

efficiency for a 40kV-4A beam power. Another experiment by

Park, Chu et al., [20], reported a 20kW power output at 6GHz

with a 10% efficiency, but a bandwidth no better than 3.7%.

Very little information on the phase characteristic was

reported in these experiments.

The reason for the narrow bandwidth is well understood:

the rapid increase of the group velocity as a function of

frequency in a smooth walled waveguide circuit allows the

interaction between the beam and the wave to take place over

only a very narrow band. Chapter 2 shows that the best

operating condition is when the beam mode and waveguide mode

are tangent, the so-called grazing condition. In this case,
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the frequency band where the instability is excited (i.e.,

where amplification can occur) is centered at the tangential

point, with not much "elbow room" (see figure 1.1). Research

to overcome this drawback is very active, and several sche-

mes to improve the bandwidth have been suggested. Barnett,

Lau, Chu and Granatstein, (21], used a tapered waveguide

circuit in an experiment that achieved a small signal 3-dB

bandwidth of 13% with 18-dB gain at midband(35 GHz). The

same investigators suggested another structure using a

tapered waveguide as well as a tapered external magnetic

field profile: they calculated that a saturated Landwidth

greater than two octaves is possible for both TEO, and TE 1 1

modes, (22]. A tapered two-stage structure with a tapered

magnetic field was proposed by Ganguly and Ahn, [23]: their

calculations showed that a 45% bandwidth at 45dB gain and

25% efficiency is possible if the axial velocity spread of

the beam is zero; they found however that both the gain and

the bandwidth are very sensitive to the degree of the beam

velocity spread, to the external magnetic field profile, and

the various beam and circuit parameters; the expression for

the efficiency was derived under a quasi-linear approxima-

tion. Since these proposals were made several years ago, no

experimental results have yet been reported.

Another concept for increasing the bandwidth of the

gyro-TWT is to slow down the wave such as to match the beam
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axial velocity over a relatively large frequency range. In

other words, the idea suggested here is to find a structure

capable of maintaining the grazing condition over a large

enough frequency range. Several slow wave structures have

been proposed, including dielectric loading of the waveguide

[24], helix loaded waveguide (25]-[26], and disc-loaded

waveguide [26]-(27). No experimental results on these ap-

proaches have been reported either.

Choe and Uhm, (26], investigated the disc loaded wave-

guide in connection with the gyrotron application. Using

the TEO, mode, they found that the group velocity of the

wave can be adjusted by varying the. disc inner and outer

radii a and b, and the spacial period L (see figure 1.2 for

notation) . However, the TEo, mode is not the only propagat-

ing mode in this structure and hence, mode competition,

[28], is a possible shortcoming that has to be addressed. On

the other hand, the TEO, mode is the only one which excites

pure TE modes at the discontinuities, thus simplifying the

analysis of the fields in this structure. The only calcula-

tion given in [26] on the gain versus frequency showed

finite but strongly frequency dependent gain over a larger

than usual bandwidth (13%). It is our understanding that

this idea is not pursued at NSWC any longer.

In the present effort, we also analyse the periodical-

ly disc-loaded cylindrical waveguide for gyro-TWT applica-
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tion, but using the hybrid H11 mode. The principal goal of

this study is not to achieve a MM wave device, but to achie-

ve a device for S to K band range applications of suffi-

ciently high qualit; that it can compete with conventional

TWT's in both performance and cost. The choice of the H11

hybrid mode shall be elaborated further later on.

Chapter 2 describes the general approach to the prob-

lem. It describes the reasoning leading to the desired

circuit dispersion characteristic. In chapter 3, we show

that the cold circuit dispersion relation can be accurately

described by a polynomial of the form

ko 2 = a4 k
4 + a 2k

2 + ao

in the first Brillouin zone. We make use of the polynomial

approximation for the cicuit dispersion relation to obtain

the gain, small signal bandwidth and the phase characteris-

tics of the gyrotron effect. These results from the small

signal (linear) analyses were obtained in the two cases of a

spacial growth (complex wavenumber, real frequency) and of a

temporal instability (complex frequency, real wavenumber).

In chapter 4, the periodically disc loaded cylindrical

waveguide is analyzed. The dispersion relation obtained

numerically is compared to the experimental results whenever
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possible. The results are then fitted with the polynomial

approximation. The circuit analysis was for an exp(jo)

azimuthal variation for which the Floquet modes are hybrid.

Chapter 5 is a presentation of the non-linear analysis

based on the phase averaging technique developed by Kuo and

Cheo, [29]-[30], and adapted to the present structure.

Saturated gain, bandwidth, output power and efficiency are

presented.

The last chapter compares the results obtained to those

published for different configurations, identifies and

discusses some pertinent issues for further work.

Two appendices are included for convenience of the

readers:

* Appendix A details the linear dispersion rela-

tion derivation for TE modes [31] and for TM

modes;

* Appendix B is the derivation of the non linear

integro-differential equation.

A list of references is provided at the end.
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CHAPTER 2

GENERAL APPROACH

Most of the works on gyro-TWT's done in the past used

structures of the smooth wall type, i.e., parallel plate

waveguides, rectangular or cylindrical waveguides. All these

structures have in common the fact that they support super-

luminous waves. The dispersion relation foe these structures

is the typical hyperbola

2

(-) - (k 2 + kc 2) = 0 (2.1)
c

where kc is the cutoff wave number determined only by the

waveguide geometry, and is therefore independant of both the

frequency w and the propagation constant k.

A beam propagating in a helical trajectory along the

waveguide will interact with this superluminous wave. The

e3lectrons will experience forces that vary as

j(at - kz)
F = Foe

If the beam is periodic, and its velocity in the
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transverse plane varies as

vt = VoCOSkbZ

then the rate of change of the energy of the electrons will

be

dE j(wt - kz)
-- = VoFocoskbze
dt

1 j(wt - kz - kbz) j(wt - kz + kbz)
= 2V oFo[e + e

The energy exchange shows two components, but only the

one traveling slower than the wave is of interest. Indeed,

when the slower wave is traveling at about the same speed as

the electrons in the longitudinal direction, cumulative

bunching and energy extraction can occur. This is described

by

at - (k + kb)z ( - kv - )t

where vz t z/t is the electron velocity in the z-direction,

and kb = a/vz describes the periodicity of the beam.

Therefore, when the Doppler shifted wave frequency, w-

kVz, is equal to the cyclotron frequency 0, the slower wave

of energy exchange is in synchronism with the beam: this is
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known as the grazing condition. This description does not

explain the need of actually having a slightly higher

operating frequency than the Doppler shifted cyclotron

frequency, a concept known in the community as Aw > 0.

However, the results of computing the hot tube dispersion

relation self-consistently shall indeed show that the modes

with gain must have also higher operating frequency,

fulfilling AW > 0.

The problem is that this synchronism cannot be main-

tained over a large frequency band: the rapid increase of

the group velocity as a function of frequency in a smooth

waveguide circuit allows only a very narrow band interac-

tion. Therefore, for the interaction to be maintained over a

larger band, the group velocity should not vary much over

all the required band. In fact, the group velocity of the

wave should be close to the beam velocity in the longitudi-

nal direction in order to maintain large band interaction.

This can be seen through the following:

the beam mode is defined by

kvz + Q (2.2)

and the goup velocity of the wave by dw/dk which must

be equal to vz to maintain synchronism. That is, the

best possible case is to have the beam z-velocity and
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the wave group velocity equal over as large a frequency

band as possible.

How can this be achieved?

In a smooth wall waveguide, the transverse wavenumber

kc is a constant, determined only by the geometry of the

guide, and not by either w or k. As such, it is not possible

to match the waveguide dispersion relation (eq 2.1) to that

of the beam (eq 2.2). However, if we can make the transverse

wave number w or k dependant, then we give ourselves the

possibility of having more control over the variations of

the group velocity of the wave.

In the derivation of the smooth wall waveguide disper-

sion relation (eq. 2.1), the left hand side represents the

Helmholtz operator v2 + (co/c) 2. If an artificial boundary

can be created such that kc is no longer a constant but w or

k dependant, the Helmholtz operator representation on the

LHS of (eq 2.1) is replaced by a different function f(w,k);

and f(w,k) = 0 is the circuit dispersion relation. Moreover,

if this relation can be matched to the beam dispersion

relation (eq 2.2) over a wide frequency range, the operating

bandwidth should then increase accordingly. We need there-

fore to find a slow wave structure so that the group velo-

city of the wave matches the beam velocity down the wavegui-

de. A circuit that can achieve the two stated purposes
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(i.e., a transverse wave number (o or k dependant, and a

group velocity about constant over a large operating band)

may be found in the form of a periodic structure.

Indeed, the dispersion relation of a periodic structure

shows (figures 2.1 and 2.2) the existence of a region in

the passband where w versus k is nearly a straight line (we

are interested only in the lowest pass band and in the first

Brillouin zone in this region). Choosing the beam parame-

ters accordingly (that is, in such a way as to make the two

slopes almost equal over the range) should solve our band-

width problem: gain can be achieved over a larger frequency

band.

Before proceeding further, two important points need to

be made :

1. In a periodic structure, the rf field, as per

Floquet theorem, is given in general by

E = E Ep(r,O)exp(-jkpZ) (2.3)

where

kp = k + (2pn/L)

L is the spacial period

Representing the Helmholtz operator on the LHS of (2.1) by a

simple algebraic function f(w,k) can be applied to the
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fundamental Floquet mode (the term p = 0) only. It is shown

in chapter 4 that, by using the exp(jo) mode and properly

choosing the dimensions of the structure, it is possible to

have the beam interact strongly only with the p = 0 term,

and minimally with the other terms which are evanescent,

decreasing exponentially toward the axis from r = a. Further

more, these other modes, propagating in both directions, all

have much slower phase velocity, and hence do not interact

effectively with the beam.

2. In addition to TE waves, the periodic discon-

tinuities shall also introduce TM terms which should in

principle be taken into account. That is, in Ep(rO) of

equation (2.3), there is a TM part as well as a TE part. For

the p = 0 term, the combined TE and TM parts form the modal

field which interact with the beam. Thus, contained in the

linear gyrotron dispersion relation, should also be the

contributions by the TM part. However, the TM contribution

is negligible and becomes zero when the grazing condition is

met*.

S.P.Kuo, private communication.
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CHAPTER 3

SMALL SIGNAL ANALYSIS

3.1 The polynomial approximation:

In the previous chapters we explained how it is pos-

sible to overcome the limitation on the bandwidth of a

gyro-TWT by using a periodic structure instead of a smooth

walled structure. The propagating mode in this circuit will

be the fundamental TE1 l mode since we are interested in the

C/S frequency band. However, the periodically disc-loaded

cylindrical waveguide which we will investigate for gyro-TWT

application will excite all of the Floquet terms of the TEin

and TMIn modes for an exp(jo) azimuthal variation.

In such a circuit, the higher Floquet modes (that is

for p 0 0) do not interact with the beam, when the latter

is confined near the axis and the higher modes are evanes-

cent, and when the choice of the waveguide dimensions are

properly made. Representation of the Helmholtz operator

to2 W 2
2 + (-) by (-) - (k2 + kt 2)

c c

is legitimate when only one single mode is considered. Such

a representation can also be legitimate in this case, except

that the kt2 is to be replaced by a function of k given by
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the circuit dispersion relation. Over the range (c,k) of

interest, i.e. the first Brillouin zone, this can be well

approximated by a polynomi.al. This polynomial should not

only fit the actual dispersion curve of that particuliar

circuit, but should also satisfy two basic conditions:

I. It must have the symetry of the system. A periodi-

cally loaded cylindrical waveguide show an even symetry;

the polynomial must therefore be an even polynomial

2. At k = r/L, the slope dw/dk must be zero.

Thus,

2

(-) - (a4k
4 + a2k

2 + aO )
c

should be a reasonable form for the polynomial.

The above discussion led us to a dispersion relation

for the periodically loaded cold tube which is simple enough

to be used in the analysis of the hot tube, and yet theore-

tically sound to be reasonably accurate.

The dispersion relation for the cold tube is thus given

by

2

ko 2 = (-) = a4k
4 + a2k

2 + ao  (3.1)

The three constants leading to the approximate circuit

dispersion relationship can be found in any appropriate way.

Generally, two conditions should be met:
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1. a = 2/c2 where is the lower cut-off

frequency, obtained either analytically or experimentally.

2. dw/dk = 0 at k = n/L.

The third relation to determine all three coefficients

can be set by some curve fitting to either theoretical

results by solving the boundary conditions, or to an ex-

perimental curve. If neither is available, any reasonable

assumption may be tried, e.g., d 2w/dk 2 = 0 at k = t/2L.

The polynomial approximation used in this study is

shown in figure 3.4, along with the dispersion curve of a

smooth walled waveguide of the same outer radius b.

However, in general, the polynomial approximation is

found from the numerical results of the complete dispersion

relation described in chapter 4. Experimental plots for

different values of a, b, and L are presented at the end of

chapter 4, figures 4.1 and 4.2.

3.2 Linear analysis of the hot tube:

In the litterature, the arrangement of the gyro-TWT

consists of an annular electron beam propagating inside th,

waveguide. This arrangement is appropriate when the higher

order modes are the ones for which amplification is sought

(i.e., the interaction of interest is with the higher

harmonics of the electron cyclotron frequency). Indeed, the

beam must be positioned in such a way as to interact with
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the rf field in the region where the field is maximum, a

very delicate arrangement in some cases: figure 3.1 shows

the distribution of the field lines for a waveguide in the

whispering gallery mode. However, in the case at hand, the

fundamental TE1 1 mode, the field is maximum at the center of

the guide (figure 3.2); hence, the beam should be positioned

at the center. In fact, the positioning of the beam is not

as critical as when considering higher order interactions:

appendices A and B show that the energy density profile in

the cross section of the guide, the geometrical f.ctor

J1
2 (l.84Ro/ilw) changes by 16% only when R, is changed from 0

to 30% Rw. Therefore, an electron beam located near the

center of the waveguide with beamlets of radius RL (Larmor

radius) centered at Ro (the guiding center radius) equal to

RL should give results not much different from those whose

guiding center is the center of the waveguide (actually,

Ro/Rw is on the order of 15%). Thus, the arrangement of the

gyro-TWT in the fundamental TE1 1 mode is depicted in figure

3.3.

The electrons, guided by a uniform magnetic field BoZo,

move along helical trajectories. In our model, we assume

that the beam is sufficiently tenuous that its space charge

electric field can be neglected .ind the spacial stcucture oC

the waveguide mode is unaffected by the presence of the

beam. The be.tm interacts with the single TE1 1 waivegui!
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mode (appendix A shows that the additional terms due to

interaction with the other TE and with the TM modes can be

disregarded), and the cold circuit dispersion relation used

in the following analysis is the polynomial approximation

derived previously (eq. 3.1).

For the disc-loaded circuit, the TE part of the p = 0

term has the same field distribution as that of the TEI1

mode of a smooth walled waveguide: the terms on the RHS can

therefore be kept as such.

The small signal (linear) dispersion relation for the

hot tube, with the above assumptions (see also the discus-

sion in appendix A) is then:

2

(-) - (a4 k
4 + a 2 k

2 + a0 ) =
c

4P (ko 2 -k2)Hl1(x,y )

To Rw2Kl (ko -z
k - kb)2

(ko - Ozk)Q 1 1 (x,y)
- ------------------] (3.2)

ko - zk kb

where

u Ib/l.7 07xlO4Oz

H 1 1 (x,y) = IJo(x)Ji'(y)1
2

Q1 1 (x,y) = 2Hl1 (x,y) + y [Jo 2 (x)J1 '(Y)J 1 "(Y) +

1
- J_ 1

2 (X)J 1 ,(Y)Jo'(y) -
2
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-J12(X)J'(y)J2 '(y)j

2

x = ktR O

y = ktRL

1

K 1 1 = (I -)------J 2 (ktRw )

1.842

kt [(w/C)2 - k2 11/2

At this point, one more question needs to be answered.

The quantity R w that appears in equation 3.2 enters into

the derivation from the averaging of the beam current over

the cross section of the smooth waveguide. It is the boun-

dary where E or Jl'(ktr) is zero. Therefore, the periodi-

cally disc loaded cylindrical waveguide may be represented

by a smooth wall cylindrical waveguide with an artificial

conducting boundary at Rw . However, this boundary is not

stationary, but function of frequency, with ktR w = 1.84.

Using this value of Rw on the RHS should be a good approxi-

mation. Since the per unit length gain of the tube depends

weakly (1/3 power) on the multiplying factor on the RHS of

equation 3.2, the error introduced should therefore be very

minor.

The first term on the right hand side of equation 3.2

gives the gain, and the second term, known as the Weibel

term, is a damping term. Both mechanisms are present simul-

?
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taneously and compete rather than reinforce each other. The

first term (the one multiplied by H1 1 ) drives the instabi-

lity whereas the second (the one multiplied by Q11 ) has a

stabilizing effect. (Note: when H1, = 0, we get a cubic

equation in w with 3 stable roots) . The Q term leads to a

threshhold beam energy beyond which the CMI can be excited:

At(O) > ot(critical)

i.e., rt(O) > rt(critical)

We see that, in order to have gain, the RHS (which

represents the coupling) must be negative. Complex roots,

whenever they occur, give the gain of the device. Equation

3.2 may be solved for either w or k. In the first case, k

is a real parameter and we solve for complex w, w = wr -

whereas in the latter case, the solution is a complex

value for k = kr + jki, (o being the real parameter. Both

approaches were used. Graphs 1 through 8 are plots of the

results of the linear analysis. It needs to be pointed out

that the polynomial representation of the cold circuit

dispersion is a mathematical approximation in the first

Brillouin zone of the true dispersion which gives all bran-

ches in the entire ko - k plane. Thus, it does not contain

all the physics of the system. Therefore, in solving equa-

tion 3.2 numerically, if any solution found lies near the

cold circuit characteristic in the first Brillouin zone, it
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it can then be regarded -is legitimate. Any solution found

away from this neighborhood must then be discarded.

3.3 Discussion of the Numerical Results:

In the following, the polynomial approximation used for

the dispersion relation of the cold tube represents the

experimental model #8 .s de:3cribed in chapter 4. The reason

for using this model is twofold:

1. The dimensions a, b, and L are such that the sipe

of the dispersion curve (which is equivalent to vz

Pzc) over most of the passband is small enough to have

positive gain; in other words, the energy of the beam

(i.e., r) is above threshold.

2. With reference to figures 4.1 and 4.2, one can

readily understand the compromise one has to make

between gain and bandwidth. The ultimate bandwidth is

limited by the difference between the lower (at k = 0),

and the upper (at k = ,/L) cut off frequencies. The

larger is this difference, the larger the bandwidth

will be. But this also leads to a larger group

velocity: less time is available for the wave to grow

for a fixed tube length. Further more, the larger the

beam parallel velocity leads to less perpendicular beam

energy available for the interaction. In the

computations done here, a fix beam voltage of 60kV is

used. This implies that the initial r = 1 + 60/511
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1.1174 and o= 0.446. The most recent experimental

results, models #6 through #8, showed that a very large

range of dispersion can be obtained, from Sz 0.08 for

model #6 (a = 1.016cm, b = 2.93cm, L = 2.7cm) at the

most dispersive end, to Az 1.0 for the earlier models

(a = 2.22cm, b = 2.98cm, L = 3.3cm, for model #2),

almost the same as the smooth wave guide. A desirable

division of perpendicular and parallel velocities is

about vt/c = 0.3 and vz/c = 0.33. Model #8 has Vg/C

0.32.

In this analysis, we therefore used the values of

experimental model #8:

L = 0.027m

b = 0.0298m

a = 0.5b = 0.01486m

With reference to figure 3.4, note how remarkable is

the agreement between the experimental data and the

polynomial approximation used. This proves our point: the

dispersion relation of this structure represented by an

infinite by infinite determinant can be accurately described

by equation 3.1.

The coeficients in equation 3.1 are:

a4 = -2.74x10
- 5

a2 = 0.7413

a 0 = 8046.1
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The initial parameters for the beam were the following

VB = 60kV

IB = 5A

T = 1.1174

Ro = RL

B o -= 1500G

3.3-3 Numerical Results:

Several beam parameters were used in order to compare

the performances of their respective tubes(Fig.3.5). Two

beams are then used for further linear and non linear

studies: beam B1 which meets the grazing condition over the

largest range of frequencies, and beam B3 which achieves the

flatest linear gain over the passband(Fig.3.6).

Figure 3.5 shows the cold circuit dispersion curve (WG)

along with three straight lines that describe the dispersion

curves of the three beams used (B1-B3). These three beams

differ by the value of the electron cyclotron frequency 0,

and/or their slope Ako/Ak; the beam voltage and the beam

current are kept the same for all three beams, i.e., Vb

60kV and Ib = 5A.

Figure 3.6 is a plot of the gain versus frequency for

all three interactions WG-B/ using the complex w, real k

computer program. The WG-B1 interaction shows the largest
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small signal gain of all three interactions.

We are not however interested in getting the largest

gain because it may give rise to some absolute instability.

What is more desirable is a reasonable high and uniform gain

over a large frequency range, that is, we would like to

obtain a gain as flat as possible over as large a frequency

range as possible. The reason for this is to have the tube

output the maximum (or close to the maximum) power over that

range of frequencies, hence, to have a tube working at

maximum efficiency over a relatively large bandwidth. The

plots in figure 3.6 point obviously to B3 to achieve the

best performance.

As mentioned earlier, equation 3.2 may be solved by

either

1. Let k be a real parameter, then looking for

roots of w; or

2. By letting w be a real parameter while looking

for roots of k.

Whenever complex roots occur, gain is indicated. In the

first approach, an equivalent per unit length gain (ki) or

phase shift (kr) may be obtained by letting ki = w i/vg and

kr = wr/vg. The equation is 4th degree in w. It is found

that over a large range of k, two complex roots can be

obtained. Two other roots are real, and hence are stable

modes. The two complex roots are conjugate to each other.
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modes. The two complex roots are conjugate to each other.

Figures 3.7(for the WG-B1 interaction) and 3.12(for the WG-

B3 inteaction) show the kr solutions versus k as compared

with cold circuit characteristics and the beam characteris-

tic. It is of interest to note that:

1. The kr of the complex mode lies above the beam

characteristic, and is almost parallel to it. This shows

that A& > 0, and the group velocity is nearly constant and

equal to v z of the beam.

2. The two stable modes are below the beam charac-

teristic (Aa < 0). The one immediately below is a modified

waveguide mode with a smaller phase velocity. The other

stable mode is a backward wave; it is however too far from

the first Brillouin zone to be taken seriously.

3. Figure 3.12 shows that for low frequencies, no

instability is excited: the solution of equation 3.2 shows

only stable roots. Then, at some frequency, two of the real

roots merge into two complex conjugates whose real part

presents the characteristic feature of the instability been

excited, i.e., Aw > 0.

Figures 3.8 and 3.9 (for the WG-Bl interaction) and

figures 3.13 and 3.14 (for the WG-B3 interaction) show the

gain (in dB/m) versus frequency obtained by the two approa-

ches. Figure 3.10 and 3.15 compares the two sets of results:
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the agreement is remarkable, especially for the WG-B3 inter-

action.

Figures 3.11 and 3.16 show the per unit length phase

delay versus frequency, showing the linear phase relation so

very important for amplifier applications.

To summarize, the lineat analysis of the gyro-TWT shows

that reasonably high and uniform gain, as well as an almost

linear phase shift can be achieved with this design. It also

predicts a 20.4% bandwidth.
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CHAPTER 4

THE PERIODICALLY DISC LOADED

CYLINDRICAL WAVEGUIDE

4.1 Derivation of the dispersion relation:

The disc loaded waveguide circuit has been analyzed iii

the past in connection with studies of the conventional TWT

(24]; only azimuthally symmetric TM modes were of interest.

Choe and Uhm [23] analyzed the axially symetric TE modes of

the structure. These are the only cases where pure TE or

pure TM modes are excited. In this section, we solve the

boundary value problem of the cold disc loaded circuit, thus

leading to the circuit dispersion relation.

The discs in our structure excite all TMIn and all

TMIn modes. They are however evanescent, except for the

dominant TEl1 mode. Hence, for a given choice of beam para-

meters, only the dominant mode will couple to the beam,

thus amplified.

The expression for the fields will therefore consist of

all the Floquet terms of both TE and TM modes. With respect

to figure 1.2, and using the exp(jwt) convention, the fields

for an exp(jo) azimuthal variation can be expressed as:
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For region I (r < a)

Hz Ap J1 (x r) (3-jkpz JO

p p 'l(p')ekZEJ

xp

Fz ~ ~ E~ C~xp~ 
e2 

'I, 
ex 

)ej
pr

R r -- 'A J3(xr)-
P x r

2cp .J1 (x pr)j ekpZ e
xpr

P x pr I

j(0 cpJ (x r)j e-jkZ j

x p

k A p cx r + l ( C )] jg Ji(X r jl p Z eo

PP

P XP ~ x r

where

- < p < W0
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For region II (a < r b)

mrz

Hz = E Bm sin- ZE(nmr) ejo
m L

m7tz
Ez = E Dm Cos Z H (7mr) e

m L

mc/L micz
Hr = Bm cos ZE(nmr) -

r LnIn 77m L
we m~rz

DM Cos --- ZH(77mr)]eJ
rm r L

mn/L m/rz
H = [j Bm Cos -- ZE(nmr) -m nmr L

jW6 mrz
--- D ICos ZH '(7?mr)]eJ
77m L

Wg mXz
Er= 2Bm sin --- ZE(nmr)

M 77m r L

m r/L m7Cz-

Dm sin Z H (,7mr)]ejfi
77m L

jw mrz
E= -- Bm sin --- ZE (? mr) -

m 17m L

m r/L mtz
j DI sin --- ZH(77mr)]eJo

77m r L

where

1 m <
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Where Xp and n. become imaginary, the Bessel functions

are replaced by the modified functions: Jn(x) ->In(X)

Yn(X) -> Kn(x ) .

We define

JI (i7mb)
ZE(nmr) = JI(nmr) - - Yl(i mr)

Y, ( 77mb)

, Jl ' ( mb)

ZE (7mr) =Jl (nm r )  YI (nmr)

YJ ('7mb)

ZH(7?mr) = Ji(nmr) --------- Yl(mr)
Yj (77mb)

, , Jl(-qm b ) ,

ZH (mr) J r (r ) -1 -- - - (mr)
Y1 ( r m b )

Also

m7 2
7m 2  = ko2 - (--) (4.1)

L

2p7r 2
k 2 = k 2  + (---) (4.2)

p L

x p2 = ko2 -kp 2 (4.3)
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Both the boundary conditions and Floquet conditions are

seen to be satisfied.

Using the continuity condition at r = a:

HzI = HzII

EzI = EzII

H H

E = E

and the orthogonal properties of the trigonometric functions

L sin(mnz/L)sin(mnz/L)dz = Lcos(m~rz/L)cos(mtz/L)dz

L
2 mm

one can eliminate Bm and Dm , and arrive at:

J1 (xp a) ZE (ima) Jl(x a)ko 2=- - - - - - - - - - - - - - A
p (k-L) -(mt) Xp ZE ( ima) jm

a kpL 2 1 2
- E - - ---(- -) ]Jl(xpa)Cp'
L p (k pL)2-(mIt) 2  ,nma Xp a

a 1kpL 2 M T 2
- E2 - [ (-- --m a ) - -. ). ( - - - ] J IA p
L p (k pL)2 -(mit) 2 XPa 77ma

kpL ZH'(nma) J(X pa) J,'(xpa)
ko  -- - - - - - - - - - - - - ]Cp ,

p (k pL)2-(m) 2  ZH(flma) '7m Xp

d aa a add l d I Oiiii p
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where

jws

C p p= -C / Cpko

Equation (2.10) is seen to be of the following matrix

form

I = = II
I Wmp -XmPI A p
1 11 1 = 0

= = II
1 Ymp -v m  I! C I

c__ P, _-P _

where the elements Wmp etc are matrices whose elements are:

2 aJ(a) ZE'(Yma) JI(xpa)
WraP =  k °  -- - -- - - -- -- - -p -- - - - - - -

mp (k pL)2 -(m) Xp ZE(0ma) 7M

a kpL 1 2 1 2
Xmp= L (k pL)2-(mZ) 2 [( ma )  (Xpa)](p)

a 1 k pL 2 Mir 2Ymp= - - --- ) - (---) ]J,(xpa)

L (k pL) 2 -(m) 2  X pa 7ma

kp2L ZH (ma) J3(pa) J (Xpa)

mp= (k 2m 1  a 1 (a
(kp L)2 -(mt) 2  ZH(??ma) p1M Xp

p x•
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and Ap, Cp' are column vectors representing the amplitudes

of the fields.

For non trivial solution (Ap, Cp'), the determinant of

the matrix must be zero: this is then the dispersion rela-

tion of the cold circuit for the entire Brillouin diagram.

We would like to emphasize here the fact that the

interaction between the beam and the hybrid H1 1 wave is

equivalent to the interaction between the beam and a TE1l

smooth walled waveguide. Indeed, equation 4.3 shows that a

beam located near the axis will interact mostly with the p =

0 term of the wave fields, the other terms having but a

small effect on the fields near the axis. This is so because

the Bessel functions will have real argument only for the p

= 0 term, and imaginary argument for all the other terms;

meaning that the field distribution near the axis will look

very much like the one for the TE11 mode since the modified

Bessel function goes to 0 towards the axis. Another reason

is that the phase velocity of the p $ 0 waves is much less

than the beam velocity, hence, even if some intEraction

takes place, it cannot sustain an instability. The hybrid

HIl field distribution at the beam location is therefore

about the same as that of a TE11 smooth walled waveguide

mode, a fact that allows us to use the RHS of the linear
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dispersion relation (eq. 3.2) as such, adjusted for this

case (i.e., substituting kt 2 by ko 2 - k 2 ).

Of course, this is not the only possible approach.

Other approaches are possible, and indeed are used. They

however have the disadvantage that, although -they give

correct results, the physical picture is not self-evident,

imbedded too deeply in the mathematics.

4.2 Discussion:

The dispersion relation in this case is very involved:

it is the solution of a double infinite determinant erual to

zero, which is of course impossible to compute. Truncating

this determinant to some manageable size will undoubtedly

introduce some error which has to be minimized. The jus-

tification, if at all, for truncation is that the modes

above a certain level are of minimal influence to the resul-

ts. However, by doing so, it actually means that the modes

discarded are of no importance, while those kept are of

equal importance. Unfortunately, neither of this is true.

Not all lower modes are of equal importance to the dominant

first TE mode. Meanwhile, the sharp edges at the discs are

expected to cause slow convergence at the higher modes. On

the other hand, very often, using only one mode is suffi-

cient to give reasonable results, such as in magnetron

cavity analysis. Which means that the determinant should not

be truncated by just eliminating the higher order term.
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This and other similar problems of truncation have faced the

electromagnetic community for decades. Numerous methods for

dealing with this problem have been devised, none of them

however giving satisfactory results for all cases. In this

analysis, very often an error of 10% compared to experiment

is regarded as satisfactory. Whereas in this study, whenever

we can devise an approach, the error is of the o der of 1%.

We were fortunate however that a parallel effort was under-

takea in which the dispersion characteristic of disc-loaded

circuits were experimentally measured : eight models were

built and measurements were performed. Figures 4.1 and 4.2

are the plots obtained.

With regard to the numerical approach used, since we

have no way of knowing a priori which terms are of lesser

influence, a trial and error approach was used, the results

compared to those given by the experiments. As we mentioned

earlier, by properly choosing the value of the axial period

L, it is possible to have the beam interact strongly with

the fundamental (p = 0) Floquet mode only. All the other

forward Floquet terms are evanescent, decreasing exponen-

tially towards the axis from r = a. The choice for L is

therefore dictated by

Experiments were performed by G. Wurthmann, J. Heary
and C. Bates of Electronic Device and Technology Laboratory
(ETDL) at Fort Monmouth. The results were communicated to us
privately.
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Xp 2  2 - k p 2  > 0 for p 0 (4.5)
< 0 for p 0

where kp is given by equation 4.2.

For a fixed range of frequencies, the value for L can

be determined from equations 4.5 and 4.2. For the frequency

range of interest, i.e., such that the lower cutoff frequen-

cy 3.GHz < fc < 4.GHz, it is found that L < .025 m.

The value for b is determined by the lower cut-off

frequency such that ktb = 1.84, kt being the wave number

corresponding to a 3.0Hz smooth wall WG cut-off frequency.

By changing the size of the discs, the slope of the

dispersion curve can be adjusted, as can be seen in graphs

9 and 10. With a choice of kt = 62.83, the value for b will

be 2.93cm.

It turns out that the value for L is also of paramount

importance to the numerical analysis: for the value of L

such that equation 4.5 is satisfied, we always have ',m2 < 0.

In this case, whatever we do, the numerical results are

erroneous: we get a complete dispersion curve well above

where it should be. In fact, the numerical simulation yields

results only when r) is real, that is, when
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12 = ko 2  - (i/L)2  > 0

If we choose L such that ko > n/L for part of the dispersion

curve, then we get very accurate results for that portion:

indeed, in this case, the piece of the dispersion curve

above ko = Yr/L matches almost perfectly the experimental

curve . For the piece below ko = x/L, the results are howe-

ver far off, well below what the measurements give us. So

far, we do not have any satisfactory explanation for this

numerical problem. We do however believe that we are not far

from reaching a solution. For example, Galerkin's approach

is now being looked into.

Note that, when k. > iz/L, the p = -1 backward

traveling wave is not evanescent inward from r = a.
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CHAPTER 5

NON LINEAR ANALYSIS

5.1 Background:

The linear analysis provides us with a wealth of infor-

mation with regard to the small signal performance of the

tube. However, according to the linear theory, if the wave

is gaining energy, it will keep on gaining energy forever.

Indeed, there is no provision in the linear theory for any

kind of saturation mechanism that the wave must experience.

In reality, some mechanism is always present to limit the

output. To assess the performance of a power amplifier, a

non linear theory must then be developed, which must predict

the saturation level, as well as all the other important

performance results such as the saturation length, the power

output, the efficiency of the tube.

Two different but simultaneously present (in the fun-

damental interaction) mechanisms are responsible for the

saturation :

- Depletion of free energy

- Loss of phase synchronism (phase trapping)

Depletion dominates when the beam energy is slightly

above threshhold. Saturation occurs as soon as the beam

loses a small amount of energy and the system becomes line-
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arly stable. This effect becomes also apparent when the

electrons have lost enough energy to the wave so that Ot is

no longer high enough to cause amplification. Phase trapping

occurs when the beam energy is well above threshold: an

average electron loses so much energy that its relativistic

cyclotron frequency no longer matches the wave's to favor

unstable interaction.

Both mechanisms are important for the fundamental

cyclotron harmonic interaction. However, the dominant mecha-

nism depends on the initial choice of the beam parameters:

the maximum free energy per particle available to the wave

is

E = [T(O) - T(critical)]moc2

Non-linear behavior of the gyrotron mechanism has

mostly been done by particle simulation [37]-[38], and a

combination of both analytic and simulation in part [341.

These approaches need large computers and are hence expen-

sive if large amounts of data is needed for trial and error

design work. In the present effort, we adapt the phase

averaging technique by Kuo and Cheo (29], and by Kuo et al.

(30] to the present structure. In [29] and [30] a single

third order ordinary differential-integral equation was

derived for the slow varying amplitude. The approach is less
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accurate than the particle simulation but readily solvable

on a personal computer. Thus it is most convenient for

estimating the ultimate performance of a power amplifier.

Appendix B gives the essence of the efforts in [29] and

[30]. The basic equation is given by:

P 3  d 2  d
I- + 2S--- + (Aw,2 + cl) -- ] E0
dt3 dt2  dt

a a-o( - kvz)
- 2oA0onomoc 2 [Eo 2 t ) - Eo2 (O)JI

t

f Eo(t')cos<Ao(t - t')>dt' - S[2c1 Eo +

0

a o
--- f Eo('t')sin<Ao(t - t')>dt'] (5.1)

where

)ot (w - kv z )

<Ao(t -t')> = - f { ------------

t 2Tonomo
c 2

[E 0
2 (r) - EO 2 (0)]1dr

ao = GAoA o

A O - WO0 0o
OO = N -- + kvzoTO

Ir
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G w -2a J~ f(a)Jm....N(ktRO)

2 n nOe
2

60 m0

A0 = 2-- (w2 - k~c )aOJN' (a0))
ToktC

CIO = ktRL and kt =(k 0
2  k21/

C1 = G[IDo - Ao2(w2 
-k

2 c2)

1 d
Do= (w - kvzo)-------[IGojN' (a 0 })

ao a

w
=U1 Aw0 

2 _ a2{D1
2 + [DO - 3A,,- --- 2c 2

3
- a( .A0

2  2- - - -- )

N4 BwO 
) - kc2

a 1) -- Jm-N(ktRo)
Bo

d 1 d
Di 2 (w - kvo2 JN'(o)~ -{---- [aOJN'(ao)l1

kv~0)daO a0 da0

3 aA0 
2w

8 Aw 0 (W2 -z 2C2

t

=c f dt' a(t') cos<Aqi(t t')

0
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t

I f dt' a(t') sin<AO(t -

0

Note that linearizing equation 5.1, we find that in

order to have gain, we need to have

(W2 - k 2 c 2 )ot 2 HI(X,y) _

(w - kv - ( - kvz)Qll(x,y) > 0

i.e., the linear condition.

The output power of the tube was derived through the

integration of the Poynting vector over the cross-section of

the tube.

1
S - ExH*

2

1 1
S=_(ErH -E@Hr) ... (E1rB ¢  -EBr )

2 2 o

k
S z ..... (ErEr + E E)

2wg O

2cp
k 2

Pz = f cos 20do
2 o 0 b

R I

wEo2{[(---)Jl(ktr)I2 + jkt2 (kr)rdr
a kt r
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k 1 Rw1

PZ 2w#0  E 2 f(I {-[J0 (ktr) + J2(ktr)j12 +-
20 o 2 0 2

1

Pz = - Eo2 f [Jo 2 (ktr) - J 2 (ktr)lrlr
8 WPo  o

Using the following relationship

f RWrJm 2 (ktr)dr
0

--- [Jm2(ktRw) - Jml (ktRw) Im+i(ktRw)]
2

and substituting, we finally get:

1k 1
Pz .- ---Eo 2Rw 2 (1 )Jl2 (ktRw) (5.2)

8 ,ogo  kt 2Rw 2

5.2 Numerical Results

For a homogeneous cylindrical waveguide (refer to

equation 5.1),

m
2

S(I ------ )J 2(kt1w )

kt 9R4 2 
t,

This term, which comes froin

Rw

f rJ, 2 (ktr)drv
0



is a geometrical r.1:o1' that rel .'esents the way the power

density is di.tributed over the cross-sectiorn, For the

geometry considered, this term should not be very much

different from the one of the cylindrical-guide (see chapter

3 for a discussion about Rw).

The above integral-differential equation was then

integrated using the solution k and w of the linear problem.

Figures 5.1 (for the WG-B1 interaction) and 5.6 (for the WG-

B3 interaction) show the wave amplitude Eo versus the inter-

action length for several frequencies*. The wave amplitude

at the input of the tube was the same in both cases, and

chosen very small so that the results of the linear analysis

apply at the tube entrance. Several conclusions can be

inferred from these two figures:

1. In the WG-Bl case, the growth rate of the wave is

approximately linear, except near the saturation point,

and the gain per unit length in the pass-band is about

the same as the small signal gain derived in the linear

analysis, which proves the consistency of this appro-

ach. This altho means that the linear approach can be

used even for large values of the wave intensity, as

long as we are far enough from the saturation level of

the tube.

The complex w, real k results were used
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The WG-B3 case is different in the sense that the

growth rate, although linear, is different from the one

obtained in the linear analysis. The reason is that the

beam and the wave are far apart, and therefore the

nonlinear relationship is different from the one deri-

ved in [29] & [30]. However, when the two dispersion

relations get closer to each other, i.e., near the

higher cut off frequency, both analyses yield the same

results.

2. The saturation value of the electric field intensity

(i.e., the value of E. at saturation) decreases as the

frequency is increased. Also, the saturated electric

field intensity decreases monotonically as the frequen-

cy is increased, then sharply near the higher cut off

frequency.

3. The higher the frequency, the longer it takes the

wave to reach saturation.

4. The maximum value of the saturated electric field

intensity always occursi at the lowest frequency

This relates to the experimentally observed fact that
the largest linear gain is obtained when the electron
cylotron frequency is closest to the lower cut off frequency
of the guide.
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Figure 5.2 (WG-Bl case) is a plot of the maximum output

power available, i.e., the saturation power, versus frequen-

cy. This power increases as frequency is increased and shows

a sharp drop near the higher cut off frequency.

Figure 5.3 show the saturation efficiency n. ver:;us

fequency. We defined this efficiency q. as the ratio of the

wave power to the dc power of the beam (the VBrB product).

The saturation efficiency

17S =
o - 2

used by many authors is meaningless in this case becau.se it

is greater than 1. This is due to the averaging process used

to derive the integral-differential equation. Taking more

terms into consideration when averaging'the initial plases

of the electrons wculd certainly be more accurate, at the

expense however of having to solve a 5th order diffe3rential-

integral equation at least.

For a complete final picture of the gyrotron amplifier,

several choices have to be made: indeed, a trade-off between

bandwidth, output power and tube length is required.

For example (see figure 5.1), a 20dB tube at 4.497GHz

",center frequency" (def ined as the one with a saturated

output electric field) will be 37cm long; for the same input

electric field, a wave at another frequency woulI have

either passed the saturation point or would still be gaining
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energy from the beam. In this example, all the frequencies

below 4.497GHz will be at the saturation point and the

higher frequencies are close to it. This therefore repi[e-

sents the best operating conditions for the tube since the

power output will be maximum (or close to the maximum), and

we also get a substantial 24.9% bandwidth (see figures 5.4

and 5.5). The bandwidth can be defined as the range of

frequencies such that:

1. the output electric field E. > Eomax//2

2. the output power P0 > Pomax/2.

In this case, they do not represent the same thing.

Another example would be to choose the "center frequen--

cy" of the 20dB tube to be 5.259GHz. But then, the tube

would be 42cm long with most of the lower frequencies past

the saturation point, hence a lower power output and a

smaller bandwidth. This situation arises if one choo:3es

maximum saturation power frequency as the "center frequency"

of the tube.
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CHAPTER 6

CONCLUSION

The results of the linear and non-linear analyses show

that a periodically disc-loaded cylindrical waveguide design

can be agood contender for gyrotron amplifier applicationts.

A 37cm long tube (20dB saturated gain) can deliver a

peak output power of about 48kW at 5.3GHz with a 18% ef-

ficiency. A nearly straight line phase characteristic, a

bandwidth of about 25% and the fact that the structure is

non-dispersive make it suitable for wide band power amplifi-

cation in communication /radar.

The only tubes that have been experimentally tested in

the same frequency band, are two Varian tubes, [18"]-[19].

They were both of a smooth wall cylindrical design; however,

the magnetic field profile in the second tube was not uni-

form, varying from 1800G at the input of the tube to 1900G

at the output, and also some distributed losses were in-

cluded in this second tube. The first tube operated at a

beam voltage Vb = 60kV and a beam current Ib = 5A, whereas

the second operated at Vb = 65kV and Ib = 8A. Both tubes

were 43cm long, for an 18dB saturated gain for the first

tube and 20dB saturated gain for the second. The small

signal gain was approximately the same in both cases, 24dB/m

for the first tube, 26dB/m for the second. The peak power
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output achieved was 50kW at 5GHz (with 16.6% efficiency) for

the first tube, and 128kW at 5.2GHz (with 24% efficiency for

the second tube; the bandwidths were respectively 6% and

8.8%. Phase linearity for the second tube was within ± 260;

it was not reported for the first tube.

In all the work performed for this study, the beam was

assumed to be monoenergetic, the space charge effect and the

velocity spread were both neglected. Chen and Chu, [44],

show that the gain is insensitive to the velocity spread in

the longitudinal direction for monoenergetic electrons, for

Apz/pzo = 0. 25%, 50%; also, according to their study, in

regions where the growth rate is small, a spread in vz can

enhance the growth rate. These results contradict previous

ones (Caplan, Lin, Chu, 1982 as reported by Feinstein and

Felch, 1987, [43]) stating that the output efficiency is

degraded by a factor of 2 from that achievable with an ideal

beam when Apz/pzo = 15%.

In that same paper, Chen and Chu confirm the existence

of a space charge instability, and show that it is an elec-

tro-static cyclotron instability that exists in the beam,

independently of the circuit. It can lead to significant

noise enhancement in gyrotrons and gyrotrons amplifiers. The

noise level was measured by Ferguson et al. to be in 44-52dB

range above thermal, comparable to the small signal gain.
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These problems have not been addressed in this work,

which was primarily concerned with the feasability and

characteristics of a high quality gyro-TWT using a slow wave

structure as its circuit. The upcoming experiments at Fort

Monmouth with a hot tube based on this design should yield a

wealth of reliable information.



NOTE ABOUT THE APPENDICES

In appendix A, the derivation of the linear dispersion

relation is presented in detail. The result has been

published first in (37] and subsequently used by several

investigators. The derivation has never, however, been

published. It has been included here for the benefit of the

newcomer to this field and for the sake of completeness.

The detailed derivation of the non-linear equation

describing the evolution of the radiation fields has been

included in appendix B for similar reasons. It was first

derived by S.P. Kuo and B.R. Cheo (29].
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APPENDIX A

DERIVATION OF THE LINEAR DISPERSION RELATION

A.1 General:

We have seen that electrons subjected to rapidly fluc-

tuating electromagnetic field will deviate from their unper-

turbed orbits. The new motion can be resolved into a quasi-

static term plus a rapidly oscillating term. It is the

slowly varying part of the motion which is responsible for

the instability and subsequent nonlinear behavior.

The arrangement of the gyro-TWT consists of an annular

electron beam propagating inside the disc loaded waveguide.

The electrons, guided by a uniform magnetic field BoZo, move

along helical trajectories. In this model, we assume that

the beam is sufficiently tenuous so that its space charge

electric field can be neglected and the spacial structure of

the waveguide mode is unaffected by the presence of the

beam. The beam interacts with a single TEmn waveguide mode,

where m and n are respectively the azimuthal and radial

eigen mode numbers. The dynamics of the electron beam is

described by the Vlasov equation.

In this appendix, we start with the derivation of the

linear dispersion relation of the gyrotron first for a beam
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interacting with a TEmn mode, then for a beam interacting

with a TMmn mode, combining at the end the two for a general

linear dispersion relation.

It is then shown that the term due to the interaction

beam-TMmn is much smaller than the one due to the beam-TEmn

interaction and hence, can be discarded without losing much

information regarding the behavior of the hot tube. Simila-

rily, the terms due to the non-fundamental interaction beam-

TEmn have a much smaller contribution than the one due to

the dominant mode.

A.2 Derivation of the linear dispersion relation:

Let's start with Vlasov equation

[ + L3-.v - e(E + v x B).7pjjf =0

where f is the electron distribution function, and let's

define in the linear approximation f = fo + f1 , where fo is

the initial and fl the perturbed distribution functions

respectively, with fl << f0  Then

+ - e(v x BoZo).V p I f, = e(Ej + v x Bl).vpfo(A.1)

where we have neglected on the right hand side the second

order small term [e(E 1 + v x Bl).vpjfl; E, and B1 represent

respectively the wave electric field and magnetic displace-

ment.
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To solve Vlasov equation, we use the Lagrangian coor-

dinate system, and define an unperturbed trajectory

dr p

dt Tmo  (A.2)

dp p
-- = - e v x Zo= - e --- x B Z = - p x Zo
dt Tmo

where 0 = eBo/rm o is the relativistic electron cyclotron

frequency.

Then, along the trajectory:

a p a dr dp d
-- + ---. v - e (v x Bo zo) = -- + --. + -- " = --
)(t Tmo  at dt dt dt

Equation A.1 then becomes

df 1
- e(E 1 + v x Bl).vpfo  (A.3)

dt

We now have only one variable, t, whereas in Euler's coor-

dinate system, we would have three independent variables.

The perturbed electron distribution function is then

given by:
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t

f1 (t) = e f [EI(t') + v(t1 ) x B1 (t')].vpIf o  dt' (A.4)

Along the unperturbed tragectory, r is a constant and the

only force here is the magnetic force due to the uniform and

constant background magnetic field BoZ o . The solution is

therefore a uniform motion along z and a circular motion in

the perpendicular plane, i.e.

Vz (t) = vz (t')

Pt (t) Pt t) (A.5)

(t) = (t')

Hence,

a aa a
p= Vp (- , ---- ) (A.6)

apt 3 pz apt' apz'

and therefore

afo afo afo
Spfo = XO + --- YO + --- ZOpx appy apz

afo apt af0 apt afo
v pfo =------- X - + ------ O + - Z o (A.7)

apt aPx  apt apx  apz

Ofo  fo0 afo
7Pf o ....- coso X0 + --- sinG yo + --- zoapt apt apz
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A.2-1 Dispersion Relation for TE modes

The electromagnetic wave fields can be described by:

El = Er ro + E 00

B1 = Br ro + B 00 + Bz zo

Then:

E1 + v x B1 = (Er + v.B z - VzB , ) r o +

(E + VzBr - VrBz) Oo + (VrB - VBr) Zo (A.8)

For a TE wave,

k
B = -- Er

(A.9)
k

Br = E

Also,

Vr = Vt cos(O -

(A.10)

v = vt sin(O -

Substituting equations A.9 and A.10 into equation A.8 we get

E + v xB 1 = [(1 kvz )Er + vtB z sin(8 - )r
r 0

kvz
[(1 ---- )E - vtB z cos(O - ) o +

WL
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vtk _ Er cos(9 - ¢) + E 0 sin(O - z)j zo  (A.11)

Taking the dot product of equation A.11 with A.7, we get

kVz 3fo Vt( a f
(E 1  + v x B 1 ).V fo [-- - - --

W apt pz

[Er cos(O - 4) + E, sin(O - )] (A.12)

where we have used the following relationships:

r. X0 = .0 yo = cos 0

ro Yo = - o xo = sin 0

(refer to figure A.1 for notation).

Now, the solution of the wave equation for the TE

electric field is given by:

W m j(wt - kz - mO)
Er - Bzo --- Jm(ktr) e

kt ktr
(A.13)

toj(t - kz - to)
E j -- Bo Jm'lktr) e

kt

With the help of Bessel's recursion equations
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m 1
--- Jm(ktr) = - [Jmi(ktr) +.Jm+'(ktr)
ktr 2

Jm'(ktr) = - [Jm_(ktr) - Jm+i(ktr)]

and Bessel's addition theorem

-jm(q o -

Jm(ktr) = e 7 Jm+p(ktro) Jp(ktRL)

Ir

ejp( - Oo + 0)

where we have used the geometrical relationships

r 2 = ro 2 + rL 2 - 2 r o rL cos a

and 0 = - + 0

we find that

Er cos(O - 0) + EO sin(O j Bzo ej(wt - kz) e-Jm~o

~JP(- - 00 + 0)
Jm+p(ktro) Jp' (ktRL) e 2 (A.14)

and hence, by substituting A.14 into A.12 and the result

into equation A.3, we get:
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df1  e Or afo j(wt - kz) -jm o
- - kv,) --- + vtk --- e e

dt kt apt apz

CO jp(- - 00' + 6)
- E J(ktr o ) Jp'(ktRL) e (A.15)

Note that the only time-dependent functions in the above

expression (equation A.15) are

7r

j(wt-kz) jp(- - 0- 0)
e and e 2

Integrating equation A.15 with respect to time (from t'= -

to t), we get:

eBz o  j(wt - kz) -jm o  ffo
fl(t) ---- e e [(w - kv z ) + vtk 0

Kr apt Pz

iit

Jm+p(ktro) Jp'(ktRL) JP(- - 00 + 6)
------------ e 2 (A.16)

P=-M W - kvz + Poo

Equation A.16 represents the response of the beam to the

perturbation introduced by the wave field.

This perturbation in the electron distribution function

gives rise to a perturbed beam current which will be the

source of the perturbation in the wave field. Hence, in the

wave equation, this source term must be included to find the

response of the field to the perturbation in the beam, i.e.,
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ko- (k2 + kt 2 )] B =-gv J)

where

= -ef fivrd 3 p

that is

[ko2 -(k 2 + kt 2)]Bz=[ - (rJJ (A.17)

r ar

A rigorous solution would be to find the Green's furkc-

tion for a 6-so'arce and thon integrate over the source. A

good approximation is to take the average over the cross-

section.

Since

j(wt - kz -mO)
BZ = BZO Jm (ktr) e

we get by substituting the expression for B z into equation

A.17

fR w [k2 - (kt2 + k2)]BzorJm 2(ktr) dr=

R w a a J r  -j(wt - kz - mO)
- f [-(rJ) _--Jm(ktr)e dt (A.18)

0 ar ao

The left hand side is easily integrated into:

RwrJm 2 (ktr)dr W2-j2
fR--2  (ktRw) +

0 2
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m2

( k )J m 2 (ktRw)1kt Rw

and Jm' 2 (ktRw) = 0 because of the boundary conditions.

Substituting into equation A.18, we get the following

ko2- (k2 + kt 2 ) - a[--(rJ)- 3Jm(ktr)
BzoRw2Kmn Ir a

-j(wt- kz - mo)
e dr (A.19)

where

m2

Kmn - ---- )Pm2(ktRw)
kt 2Rw 2

The integration on the right hand side needs more work,

For self consistency, the current perturbation must have the

same time dependance as the field that created it, i.e.

j(wt - kz - mo)
J J eSr,O r,O

hence,

Jr
= -jmJr

Also, we get through integration by parts:



79

f -(rJ )J,(ktr)dr = ~rJ Jn' (ktr)dr

Hence, the terms in equation A.18 to be integrated with

respect to r can be written as:

f [-ktrJ~m 0 (ktr) + jmJrJm(ktr)]Idr (A. 20)

With the help of the following identities,

Jm'(ktr) iJm-1(ktr) - Jm+,(ktr)1

m

ktJ m(ktr) iJmn(ktr) + Jml+i(ktr)1

the integral A.20 becomes:

- t Jf1(Jo - jir)jm-uamnr) - (J~ + jJr)Jm+(omnr)dr(A.21)

Using

J= - e fvrfld3 p and = - ef v(f~d3p

and also

Vr = Vt CO5(O- ~ and v( =vt sin(9

we get:
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- Jjr = ie f---e f - l ptdptd~dp,
0 (A. 22)

S+ jr=- jef -- e fiptdptd~dpz

U~sing Bessel's addition theorem

Jm(ktr) = e i m+p,(ktro)Jpl(ktRL)

- , - 0 + 0)

e 2

we find that

j(6 )-(
Jm,.I(ktr)e + Jm+i(ktr)e

2je i m+p,(ktro)

- ip'H- - Oo+ 0)
J'pf(ktRL)e 2 (A. 23)

Substituting equations A,22 and A.23 into A.21, and the

result into equation A.19, we come up with

-o (k2 + kt 2 )

gekt -j(oIt - kz - MO)
2 2-------e

RwRw2n2 7t Pt 2  jm(O0
f rdr f dpz f dpt f do-- e
o a~ 0 yin0
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- P'(- - Oo + 6)
Jm+p' (ktr)J'p'(ktRL)e 2 (A.24)

The integration with respect to 0 is simple since

everything is constant with respect to 0 except for the

terms

,_ -e-' - + 0)

: ejP( - + 0)

which are in the expression for fl" Hence, we have

2t jp(- - 0o + 0) -jp'(- - Oo + 6)

f e 2 e 2
0 P=- - P =- II 2 0

~!

E j(p - p')(- - 2,r j(p - p')0
t e 2 fe de

P'P' 0

27 j(p - p')O
Since f e dO = 2n6pp, where 6pp, is the kronecker

delta, i.e.,

PP, =o p = p'

we get upon substitution into equation (A.24)

4 2  2  4izge 2  Rw  Pt 2

- (k 2 + kt 2-- - rdr f dpz f dpt---
Rw Kmn o -- o rmo

afo  fo jm+p (ktRo)Jp'2 (ktRL)
[(w - kvz)--- + vtk --- E -------------- -(A.25)

pPt 'P;, w - kv z + po
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Let's choose the unperturbed distribution function to be

No
fo = --- (ro - Ro)g(ptpz) (A.26)

where No is the number of electrons per unit length of the

wave guide, the Dirac function 6(ro - Ro) means that all the

electrons have the same guiding center located on a cylind-

rical surface defined by r = R., and g(pt,pz) is an arbit-

rary function of pz satisfying fgd 3 = 1.

Then (A.25) becomes

ko2 - (k2 + kt 2 )

2ge2N o  W 00 pt 2

- w--- -- d o d p t  --- w - kv )--- + Vtkz---

RW Kmnc 0 r(m0  apt vtkz

Jm+p 2 (ktRo)Jp 2(ktRL)
g(pt,pz) --------- ------------ (A.27)

p=- u) - kv, + p()

Now, we need to integrate the right hand side, i.e.

2 Pt kpz 8 Pt
fdpz dp t --- [( )--- --- k

- m o  Tmo apt -mo ap

Jm+p 2 (ktRo)Jp'(ktRL)
g(pt,pz) E -------------------- (A.28)

p=-W k
Ta -- Pz + Poo

mo

where we have let

k
Tw - -- Pz + P~o

m
o

- kv z + pQ? -
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v = pz/Tm o  and Vt pt/Tm o

Integration by parts of (A.28) yields

, 2ge 2N0  Pt
o (k + k t ) - ------ dPz f dpt ---

Rw 
2 Kmn p=-0 0 o m O

(2 _ k2 c2)Hmp(X,y) (w - kVz)Qmp(X,y)
[ t -............... 2 .. .................. J g pt, pz )

(w - kv z + pfl) -kv z + pfl

where

x = ktRo

y = ktRL

Hmp(X,y) = [Jp-m(X)Jp'(y)]
2

Qrp(xy)= 2Hmp(xy) + y[Jp-m2 (x)Jp'(y)Jp"(y) +

-Jp m 2 (X)jp'(y)jp 1 (Y) -
2J

2Jp-m+12 (X)Jp'(y)Jp+11 (y)]

Let us now choose

1

g - (Pt' (Pz - Pzo)

that is, the momentum distribution function of the electrons

is the one for an idealized cold electron beam (the energy

spread is very small). The integration is then easily cair-

ried out. The dispersion relation of the TE modes for a

gyrotron is then

d
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ko2 - (k2 + kt 2 )

je2N 0 "It2 (w 2 
- k 2 c 2 )HmN(XY) (o -kVz)QmN(XY)1

2 w- -N---rmo7rRwKmn (w-kvz -NO)
2  9 - kv z - NO

where we have introduced the grazing condition,

= kv z + No (i.e., p - -N)

that is, the only electron cyclotron harmonic that interacts

strongly with the wave is the lowest.

We can rewrite the common factor on the right hand side

as

pe2No 0),L)2

Tmo7rRw 2Kmn rKmnc 2

4u

TRw 2KrM

p average non relativistic plasma frequency

2 
Nce

2

mo rw 2

= Budker constant

No! 0 e
2

a= lb (the beam current)
4 7rm

A.2-2 Dispersion Relation for TM Modes

Following the same procedure, we derivc' now the disper-

sion relation for TM modes

E l = Er ro + E 0o + E. zo



85

BI = B r ro + B P%

Then

vz W

E+ v x B1  (1 - kc)(r ro + E 0)+

E+ -- E-- oI Er- S) + E 0sin(O -o

S c kc kz
and

- -- I r o ( + E -i ( +

c kc apt

Vt 0) ato

tEz +--- [Ercos(B @ + E 0sin(O ~J p

But now

k j~wt - kz - mo)
Er -- EzOJM'(ktr)e

kt

- Ezoim(ktr)e jw-z-~
kt ktr

After substitution, and using Bessel's addition theorem

we get

=f e E --u v z a f V t co - f . +

dt RLkt 2 c c apt c c apz

i (tR~ej(wot - kz) J (toe-.jmo 0 j e- (2 0 + 0)

m+p

and, upon integration,
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j(wt - kz) -jmb o  k
fl(t) = - jeEzoe e ---

ktw

w - 2 )-- - fo + 2kvt tfo 0+ k (t k ] apt + kt k --
P

(----.+ 1) J (ktro)Jp(ktRL) Yr
ktRL m+p JP(- 00 + 0)
----------------------------- e 2

p=-W - kv z + po

where we substituted &2 /c 2  by k 2 + kt2

After integration with respect to 0 where

2i jpG -Jp'G
f e e dO = 276

and integration with respect to r for the same unperturbed

distribution function as we used for TE modes, the disper-

sion relation for TM modes becomes

0 2  2 uNoe 2  Ez °

- -(k 2  + kt j -
c2  Rw 2Kmn Bzo

f dpz f p pt 2 kk + kt
0 .. . k m w k pt

v t _,g p
(k2 + kt 2 )-- p( + 1)

k apz ktRL

j2 (ktRo)Jp,(ktRL)Jp(ktRL)
m+p

(A.31)
w - kv z + pQ
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We can substitute

Noue 2  p2
0 by j

Rw 2 Kmn 2c 2 Kmn

Integration by parts of equation A.31 yields

U) 2 4 1 k EZO
(-) - (k2  + kt 2)- -(- j )

c rKmnRw W Bzo

2 [U2 - (k2 + kt 2 )c2]GmN(x,y)
(w - kv z - NQ) 2

-(k
2 + kt 2 ) ZJRNx)

(A.32)

w - kv z - NO

where

x = ktR O

y ktRL

G =- 2(xN

GmN(X,y) =_ J (X) - JmNN(y)J N (Y)

yy

A.2-2 General linear dispersion relation

Combining the results of the interaction with TE modes

(equation A.30) and the result of the interaction with TM
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modes (equation A.32), we finally get the general dispersion

relation

0)2 p2
- (k2 + kt2 =

c 2  rKmnc 2

(02 - k 2 c 2 )HNm(X,y) _k E [2 - (k2 + kt 2 )c2]GNn(xY)

{0t
(w - kv z - NO) 2

k Eo[ 2

(w - kVz)QNm(x,y) - J - (k2 + kt 2 )v ]RNm
-a B - k . (A.33)

w - kv - No

If we substitute Ezo/Bzo by jcC/A, we then get a real

dispersion relation

Ez o  C C1
--- - j C -

Bz o  A A

The first term in the curled brackets on the RHS repre-

sents the contribution from the instability, the second

term is the attenuation due to the Weibel instability.

A.3 Simplification of the dispersion relation

The linear theory allows us to derive the small signal

dispersion relation (eq. A.33) for all types of beam-TE and

beam-TM interactions. It may, however be possible to make
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some approximations in order to have a simpler equation to

work with. To achieve this purpose, we should compare the

contributions from each interaction to the one which is

dominant (i.e., the TE 1 1 -beam interaction). We know that the

magnitudes Ap/A o and C('/A o are small numbers since only the

fundamental mode is propagating, the higher order modes

being small and evanescent.

However, this is not enough to neglect the TM terms.

Indeed, we need to know what is the contribution of the TM

modes to the coupling. To do this, let's calculate the

ratios of the TM to the TE contributions for each term on

the right hand side of the dispersion relation (equation

A.33)

TMI 2 k 2 Ak GNm Cp'

EG = --I - -(- )
TEIGain Ot 2 ko ko(l - k 2/ko 2 ) HNm Ao

TMI k 1 - Oz ko/k - 20zAk RNm Cp
EW = -- I --------------

TEIWeibel ko  (1 - k/ko)P z  QNm Ao

For a given (w,k), these contributions are negligibly

small. We can therefore disregard the contribution of the TM

Modes to the dispersion relation, the error thus introduced

being small.



__ - 1:Electron at t=Q

K __ - ~ ~ 2~E~ecronat __ -(without perturbation)
1 ------- 3:Electron at t 0

I I - -:-(with perturbation)

______ ___F.IGA1:Eectron trajectory
Symbols used in the text
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APPENDIX B

DERIVATION OF THE NON-LINEAR

EVOLUTION OF THE RADIATION FIELDS

B.1 General background:

The investigation of the non-linear evolution of the

CMI starts with solving the equation of the single electron

motion in the radiation fields. It is assumed that the phase

trapping of the bunching electrons in the wave fields is the

mechanism responsible for the saturation. The relations that

determine the collective response of the electrons to the

radiation fields are derived following the averaging of the

results over the initial random phase distribution of the

electron transverse velocity. The response of the radiation

fields to the current induced by the electron bunching is

then analyzed using the equation of conservation of energy.

This self-consistant approach leads to the derivation of a

single non-linear equation that describes the evolution of

the radiation field intensity.

B.2 Characteristic equations:

The motion of the electrons in an electromagnetic field

superimposed on a d.c. magnetic field is governed by the

following set of coupled non-linear equations
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dr p
-- = --- (B. )
dt rmo

dp.. = -e[E + v x (B + B zo)] 
(B.2)

dt

The equation for the conservation of eneygy is defined by

dr
moC 2 __ = -eE.v (B.3)

dt

where

+= (1 +- -- )1/2
mo 2C2

p = TmoV

The wave fields E and B of the TEmn mode in a circular wave

guide of radius Rw are given by

Bz = Bzo Jm(ktr) eJk' e-Jmo

Er Bz _ Jm(ktr) e-Jkz e
- jmO

kt ktr

W= j -- Bo Jm'(ktr) e- j k z e-jm (B.4)

kt

Br = k/E

B@ = k/, Er

where kt is the n-th root of the equation Jm'(ktRw) 0.

Referring to figure A.1 for notation, the spatial coor-

dinates (RO) of the electron can be expressed in terms of

the coordinates (Ro,'0 ) of the guiding center of the elec-



93

t:ron and the coordinates (RL,9 ) of the motion of the elec-

tron about the guiding center, i.e.,

r2 = Ro2 + RL 2 
- 2RoRLCos(2 - o + 0)

= 0o - sin- (RL/Ro)cO.s(0o - 0)

where RL = vt/Q = Pt/moTo is the Larmor radius of the elec-

tron.

If the wave frequency w is near one of the Doppler

shifted harmonics, i.e., w = kv z + NO, the slowest term of

the forces experienced by the gyrating electrons has the

dominant influence on the orbit evolution of the electrons.

Retaining this term only in equation B.1, we first define a

self consistent trajectory

RL RL(t)

0 = (t) = 00 + 0(t) +
0

prior to express B.1 explicitely.

RL(t) and 0(t) are to be determined self-consistently

and represent respectively the time dependant Larmour radius

and that term in the phase that varies slowly in response to

the slow time varying force.

We then substitute these relations and the expressions

for the fields (eq. B.4) into B.1 and B.2 and neglect all

the fast oscillating terms.
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With the help of the addition theorem of the Bessel

functions, the following results are derived

jm( o - 0)
Jm(ktR) = e Jm+l(ktRo)Jl(ktRL)

1=-

-jl(x/2 - 0o + 0)
e

(B.5)
tj(m±l)( o - 4#)

Jm+i(ktR) = e

±jl(n/2 - 00+ 9)
J+l+l(ktRO)Jl(ktRL)e

Using B.5 and

jxsino - jlO
e = J1 (x)e

a set of self consistent characteristic equations for the

slow varying functions T, RL, 0 and, vz are derived

d
--_a = a(w - kvz)JN'(")cosO (B.6)

dt

d
- = - Au[l + aJN(a)sinoI -

dt

dd

d 00o2W

--- = aa-JN'(a)cosO (B.8)
dt Tkt 2c2
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d fl 2  k 2c 2

--vz  = - (kvz  - )aJN '(a)cos0 (B.9)dt r2kkt 2c2

where

a kI:R L

eB
o

fo = FQ = - -

moc

t 7rI

0 (m - N) o  f Aw(t')dt' + N(0 + 00 + -) + kz o + -
0 2 2

k 2 c 2 T - To

= w - NO - kv z = Aw o + (o ----------

Aw = W - Ujo

=j - + kvzo

NB

a ( I)N "-Jm-N(ktRo)
Bo

Under the grazing condition, vz = k( 2 / 10 v g, equation

B.9

dv z
reduces to --- = 0 and thus v. = vzo

dt

To close the :yctem of equations, it is necessary to

include a field equation that takes into account the dynami-
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cal effects of the m,,dium on the fields. The enu!rgy conser-

vation equation B.3 is used for this purpose, and under

gr.izing conditions it becomes

dr U6o d

0 n 0c -- + --- o= 0 (B.10)
dt 2 dt

n o is the electron beam density averaged over the

cross-:iection of the guide.

< > stands for an average over the random initial phase

distribution of the electron beam.

E 0 - - Bzo

ktc

m
2

S(1 ------- )J 2(kt R ) is the filling factor and
kt 2Rw

2

represents the energy distribution over tho r'sc;- ection of

the guide.

The integration of equation B.10 leads to

(Y

nomoC 2 (<r> - <To> )  = --- [Eo 2 (t) -. E.2(0)1 (B.11)
2

B.3 derivation of the NL field equation:

From the equation of conservation of energy, we can

find the polarization rurrent density, i.e.,
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dr
n o mo c -- + J.E 0 (B.12)dt

yields

2 2 JN'( )

= -anomoC ------ a------coso'
7kt 2c 2  Eo

But, since,

NBzo
a --(- ) -- JmN(ktRo)

BO

and

W
E0 = --Bzo

kt

the expression for a becomes

N kt Eoa= .1) -- Jm-N(ktRo)
w BO

and the expression for Jp, the polarization current density,

is then

enon
o

J - ( 1)N ----- JmN(ktRo)OJN'(tU)cosO (B.13)

rkt

Also, using equations B.1O and B.12, we have

dEo
p -d - (B .1 4 )p d t
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We assume in the present analysis that the effect of

depletion of the electron rotational free energy to be

insignificant. Then, Eo(t) and ,o(t) are expected to vary

with time much faster than the other variables a, T, and vz.

We can then neglect the slow time variation of a and T and

make a z a. in equation B.6 and T = To in equation B.8.

The averaged (over the random initial phase dist:ribu-

tion) polarization current density will then be

eno o  a
<Jp> = (- )N... .mN(ktRo)<-JN'( )cos >

kt 7

_Pnoo o  (Xo
<Jp>=- (- 1 )N ---- Jm-N(ktRo)--JN'(ao)<coss>(B.15)

kt -O

Using equation B.14 and writing equation B.15 as

<J p> - (-l)Np<coso>

we get

(7o dEo
<coso> -

(- 1)NP dt

<coso> = (-I)N+
il 

d E (
= (B.16)

P dt

where

eno a1
p =......JmN(ktRo)--JN'(0o)

kt To
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Equation B.8, with the :implifying assumptions c z ao
and

can now be integrated to obtain

- To  = - JN'(ao) dt'a(t')coso' (B.17)

kt 2c2 To a

We can also approximate the expression for %w (using

To) to give

+ TT0 k 2 c 2T - To  kC

Aw = Aw0 - - (B. 18)
T o

which, upon substituting equation B.17, yields

t
A a A a 0 + Aof dt'a'e-oso'

0

where

A 0 2 2 k2C2)aA0  - (2 _ k c )aoJN,(ao)
Toktc

a' = a(t')

Using equations B.16 and B.17, the average of Aw can be

expressed as

< o k 2 c 2 
-) as 0-- - [Eo2 (t) - E 0 2 (0)1

2ronomoc 2 (B.19
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Taking into account only the resonant processes, the

averaged polarization current density will be shown to obey

a second order differential equation.

From the definition of Jp, we get

d2 a

--- /[ _JN' (a)d2j dh2  dt r

2 2---- ------------ ]sS +
dt dt a/- JN'(a)

d a

__ I-JN' (a)]

d2p> dOV dtd -- T I< .+ 2 ----sd t- I sin>
dtd dt al / JN'(a)

d2 a
2 2 21 LJN (a)dd J pdop dt T

p%
Pr<---COsk -------- cos> +

dt 2  dt alT JN'(a)
d a

2 __ [ N (a)]
d dq dt -

+ <---sinOb> +- 2< ---------------- sinO>j (B.20)
dt2  dt a/y JNt (a)

In the following, we are going to derive the explicit

expressions of functions averaged over the random initial

phase distribution of the electron beam. Only the linear

terms, and the non-linear terms of lowest order are retai-

ned.

Using equation B.6 through B.8, we get



-- _- [ , (a)

do dt[T r a dqi AoW
<2 -- ----------- sino> <--a(D o - )sin 2>

dt a/r JN'(a) dt W2 - k2C 2  (B.21)

d2 a

d2r
COSi > =

air JN'(a)

(Do2 + D1 2)a2<cos3o> + (DO  - )oc2
0 2 _ 2c2

da 1
[--<cOSq> + -a<Awsin2o> + a 2D°<sin2ocoso>
dt 2

Aou

- 3 ------ a2 <cos 30>/ (B.22)
(02 - c

where

1 d
Do= (u - kvz) IaoJ' (ao)]

ao dao
d I d

D 2 (w - kvz) 2JN'(a o ) --- {----- [aoJN' (ao)1}da o ao da o

and we have neglected 2Aow/( 02 - k2 c2 ) compared to Do 2 + D1 2

and also a2AWJN(O)sin 2 o since this term is high order non-

linear.

We also have
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-= - Aw 1 aJN1(a)sinOI aDosino (B.23)
dt+

d02 2
-- = (Au 0o) + A(w+ Awo)

dt

t

f dt'at coso' + a2D. 
2sin2 o + 2aD0 Awsi no (B.24)

0

- - aAOcosO - D0 (--sinO aAwCOSO) +

dt2  dt

a2

--D2- D2 - A.JN(a)lsin2a (B.25)
2

Then,

< -- cso>= (Aul0 )
2 <coso> + a 2 D0 

2 <sin2rOcosO> +

dt

aD,<Awsin2o> + A 0 <(Au) + AO 0 )C0s4,

J dt alcoso> (B.26)

0

d201 i da 1
<~~ ---io -aA0 <sin2.o> - - --D0 + -aD <Awsin2o>

dt2  2 02 dt 0 20

1
+ a(o2- DI 2 )<coso> (B.27)
4

The following simpJlfications

<sin2ob> =0
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1 1 1
<sin 2 OcosO> -<coso> - -<cos3o> -<coso>

4 4 4
3 1 3

<cos30> = -<coso> + -<cos3o> = -<coso>
4 4 4

can be substituted into equations B.21, B.22, B.26 and B.27,

and the result into equation B.20 which then becomes:

d2  p 2 Aom 3 Aow
<c2p> t>[3a 2 - --D 4 2 _ 2c2)
dt2  w k 2 c2  4w kC

da 1 Aow
(D° 2 + D12)a2 + (Ao)2 ] - -- (D --  - - - - - - - - -) +

dt 2 2 -k 2c2

3 Aow
-<Awsin2>a.-------- +
4 w2 - k 2c 2

t

AO<(Aw + Awo)COS f dt'a'coso'> (B.28)
0

We still need to find the explicit expressions for

<Awsin 2o > and <(Aw + AWo)COSO ftdt'a'cosO'>

0

| t

<Awsin2o> Ao<2sinocosof dt'a'coso*>
0

t
Ao{<sinof dt'a'cosocos'> +

0
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<CosO dta'cosi' sinqo>}
0

-A{,<sinof dt'acos(o~ h) +

2 o

<sin f dt'a'cos(O + 05')> +
0

<cos f dt'a'sin(O - 01')> +
0

<cos f dt'asin(O +0'>
0

We make the following approximations

<sin f dt'a'cos(O - 01)> =<sino> fdt'a'<cos(O 0-
o 0

=<sino> fdt'a'cos<o 0-
0

<cosO f dt'a'smn(O - 01)> =<coso> fdt'a'<sin(O 0- )
0 0

= <cosO> f dt'a'sin<O O-
0

<sirf dt'a'cos(O + 01)> =<sinO> fdta<cos2o> 0

o 0

<cosbf dt'asin(to + 01)> <coso> fdtfa'<sin2o> 0
0 0
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These approximations are legitimate if only the linear and

the lowest order non-linear terms are taken into considera-

tion.

With the help of these approximations, we get

1 t
<Awsin20> z -Ao{<sinO>f dt'a'cos<O - 0'> +

2 o

t

<cos > dt'a'sin<O - O'>}
0

Integrating equation B.23, we get

t t

S- S' = - i'drAw(r) - af ,d r [A'JN(a) + Dolsino

So that

t

<0 - O'> - <A (r)>dr

The other expression we still need can be expressed as

t
<(Aw + Awo)coso f dt'a'cosb' =

0

t t
= <AwcosSf dt'a'cos,'> + Amo<cosSo fdt'acos'>

0 0

1 t 1 t
-Aw f dt'a'cos<o - 0'> + -<Aw>f dt'a'cos<O - 0'>
2 o 2 o
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-(<Aw> + Aw 0 )f dt'a'cos<O -O'

2 o

Also, from the definition of Jp we have

dJ p en000o
-- =---- jm-N(ktRo)
dt kt

d a do5
{COSO--t-JN'(a)] - JN (a)--sinO}

dt rr dt

<-->=--Jm-lq(ktRO)
dt kt

<_ <N (u)--sino> - dcs--- a (()
7' dt dt Lr

<dJ P>=P<do 1io ( AoW (.9
=~~~~~ P<sa>--(D - - - - - - - ---- )] (.9

dt dt 2 0 -2k~c

Since

d4o 2 2
dt sino= Awsino - aAwJN(a)sin -aDosin 4)

We have

d
<--sino> <AMosino> - -D

dt 2

1 tI
=-Atv0<sino> - -Aof dt'a'sin<O - 0>--D

2 o 2
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which yields

dO
<--sino>

dt 1 Aor t 1 aD o<sinO>= d 1 dt'a'sin<O - '>

Wo 2 Awo o0  2 o

(B.30

Using equations B.29 and B.30, we get the following

expression

dJp

dt 1 Aoc 1 I aD o
<sine> = [ + -(D ---- )-

P 2 - k2c 2  Awo  2 Ao

1 Ao  t
- --- dt'a'sin<o - q'> (B.31)
2 A 0o 0

We also have from equation B.13

Jp

<cosO> = (B.32)
P

Substituting equations B.31 and B.32 into equation

B.28, we get

d2j 3a AO2 ( dJ j A003 a Ao. Ai

< --- 2> ----- ----------- I <---> + Awo2 + -a --------- I
dt 2 4 A o 02 _ k2c 2 dt 4 w2 - k 2c2
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AoW 3 Aow
-a 2 ( 2 + D 2 ) 3a 2  - k2c 2  4 2 - k2c

a - 2 [( - + AoIs + aDoj I+

8 W2 - k 2c 2 AW O  2 - k2c 2 s

1 da 1 Ao
-PAo(Awo + <Aw>)Ic - P--(D o - - ------- ) (B.33)
2 dt 2 (o2 k2c2

where

t
I c = f dt'a'cos<i5 - 0'>

0

t
i s = f dt'a'sin<k - 0'>

0

If we let

1 AoW
Co  = P (D o - - - - - - -2 w2_ k2c2

3 aAo2W
2S = -I--------------I

4 Awo(w
2 - k 2 c 2 )

3 A: 2

A12 = A:°2 - a2 [D12 + (Do 2 32 - - - k - - -2
)  +

0 2 w2 _ k 2 c 2

3 Ao 2W

-a --------- I
4 w2 - k 2 c 2
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equation B.33 becomes

d 2 j dJ~ (A 1 )dt2  dt

da r Aow

Co dt S 2 _ k 2 c 2 )

Aos] + -PAoIc(<A(,> + AW o ) (B.34)
2

Equation B.14 relates the polarization current density

and the radiation field intensity. Using this, and the fact

that Aw plays a role similar to the population inversion

function in a two-level system which allows us to define a

population inversion function

noromoC2
W = n---m-o 2 (<Aw> + Awo) (B.35)

12 0 02

where K is Planck's constant.

We finally get a single equation that governs the nan-

linear evolution of the radiation field intensity

d3  d 2  d

+- 3 -- 2+Aw + cl) __ IE0
dt dt 2 dt
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OrF0 (u) -kvz) 2  -E
2 (O]

2T 0 Awonomoc

t

f E0 (t')cos(o - 01>dt' - S[2c1 E0 +

0  t-

+ f E0 (t')sin<O - 0'>dtf'](.3)
Aw 0o 0

<0 0 > W t UE0-(w - kvz)

- ~ ~ f 11 - j--------------
t 2rinmc

2

[E0
2 (r) - E0

2 (()) dr

a. = GA0 Aw0

N -=-N + kvzo

wp2 a0
G------ ----JN'(a)Jm-N 2 (ktRO)

ata T

2 noe
2

A0  -- ) ((o1 _ k c2)aojN' (a 0 )
roktc

ao= ktRL

w

= G{D2- A 2 - k 2 c2 )



1 d

(w kv 0)ao dao

Aw, Aw 
2  

- a2tD 1 
2  + [D. 3A -- 2 k22(21

3 W
- a(A 0 

2  
2-- i

42 k c2

a ( )N -- m-N (ktRO)
BO

d .1 d

D1 (w - kvzo) 2 jr,")dao a0 daoaoN~a0

3 aA. 2 w
------------------------ 2

8 Auw0 Cw -kc

t

=c f dt' a(t') coS<AM'it t- )

0

t

is f dt' a(t') sin<AO(t -l)

a2 (1)Jm 2 (ktRw)
kt 2RW 

2
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